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Abstract 

The geometry of the Kikuchi lines in high- and low- 
energy electron diffraction patterns is defined in terms 
of intersections of the Brillouin zone boundaries with 
a sphere of reflections. Full treatment of the cases of 
two-dimensional and one-dimensional real lattices 
reveals previously unknown boundaries in the form 
of parabolic surfaces (2D) and paraboloids of revol- 
ution (1D). These boundaries are applied to K lines 
which arise from electron channeling. Correlation is 
made with the previous explanations of parabolas 
and circles in the reflection high-energy electron 
diffraction (RHEED) and transmission high-energy 
electron diffraction (THEED) patterns and K2 and 
K1 lines in low-energy electron diffraction (LEED) 
patterns. Experimental convergent-beam RHEED 
patterns of a reconstructed MgO (111) surface are 
presented in which parabolas due to the surface 
periodicity are shown for the first time. 

I. Introduction 

It is well known that Kikuchi bands and lines, as well 
as parabolas and circles, can be observed in the 
high-energy electron diffraction patterns from elec- 
tron transparent crystals (transmission high-energy 
electron diffraction: THEED), and from surfaces of 
bulk crystals (reflection high-energy electron diffrac- 
tion: RHEED). The parabolas and the circles are 
more prominent in the RHEED patterns and have 
regained attention due to their association with sur- 
face channeling (resonance) effects. Their geometry 
has been described in several works (Ichimiya, 
Kambe & Lehmpfuhl, 1980; Lehmpfuhl & Dowell, 
1986; Peng & Cowley, 1987; Yao & Cowley, 1989; 
Gajdardziska-Josifovska & Cowley, 1989) but is still 
the subject of discussion. The parabolas and circles 
in the transmission patterns have only recently been 
compared to their surface equivalents (Lehmpfuhl & 
Dowell, 1986; Yao & Cowley, 1989; James, Bird & 
Wright, 1989) to suggest that they should also be 
connected with electron channeling. 

Lines, other than the conventional Kikuchi lines, 
have also been observed in the low-energy electron 
diffraction (LEED) patterns from surfaces of single 
crystals. They have been called K2 and K 1 lines and 
have been ascribed to diffraction from the two- 
dimensional surface and the one-dimensional rows 

of atoms on the surface (De Bersuder, 1968). K2 
lines have also been related to the surface resonance 
effects (e.g. McRae, 1979). 

Miyake & Hayakawa (1970) have pointed out that 
the surface resonance effects in LEED should be 
equivalent to the surface channeling effects in 
RHEED (also known as the second kind of intensity 
anomaly). Chadderton (1970) has argued that elec- 
tron channeling effects should be described in the 
framework of wave mechanics and are essentially 
diffraction phenomena (exceptions are very high- 
energy electrons whose channeling resembles the 
classical channeling of ions). 

This paper is an attempt to unify the numerous 
previous observations and descriptions of the 
different lines in the THEED, RHEED and LEED 
patterns. We will demonstrate that Brillouin zones 
can be used to reproduce the geometry of the lines 
seen in the diffraction patterns, and to gain insight 
into their physical meaning. We will consider three- 
dimensional (3D), two-dimensional (2D) and one- 
dimensional (1D) real lattices and give full treatment 
of their Brillouin zone boundaries. Emphasis will be 
given to the boundaries which, to our knowledge, 
have not been described before. We use those boun- 
daries to explain the channeling geometries both in 
the bulk and at the surface of crystals. We also show 
experimental RHEED patterns from a reconstructed 
MgO (111) surface in which parabolas due to the 
surface periodicity are observed for the first time. 
This experimental result supports our general con- 
clusion that the dimensionality of the periodic scatter- 
ing object determines the geometry of the Kikuchi 
pattern, and that channeling only serves to reduce 
the effective dimensions of the 3D crystals. 

2. Brillouin zones and Kikuchi lines of crystals 

2.1. Brillouin zones and diffraction 

The Brillouin zones (BZ) are among the basic con- 
cepts of solid-state physics. Even though their con- 
struction exhibits all the incident wavevectors which 
can be Bragg scattered by the crystal, the zones have 
seldomly been used when describing electron diffrac- 
tion. In this section we will give a brief review of the 
diffraction condition for a periodic lattice of scat- 
terers, and of the Brillouin construction as its 
geometrical representation. The purpose of the review 
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is to introduce the notation and the conventions which 
will be used in the subsequent sections. 

Conservation of energy in the elastic scattering 
events imposes equality of the magnitudes of the 
incident wavevector (ko) and the scattered wavevector 
(k): k 2 = k 2. Conservation of momentum requires that 
the scattering vector (Ak) be a vector of the reciprocal 
lattice (g): A k = k - k o = g .  The combination of the 
two equations gives the diffraction condition 

2 k o . g + g 2 = 0  (1) 

which can be rewritten as 

ko. ( - g / 2 )  -- (g/2) 2. ( l a )  

The geometrical interpretation of ( l a )  gives the 
Brillouin construction. Namely, when one point of 
the reciprocal lattice is chosen as its origin, and the 
reciprocal-lattice vector ( -g )  is bisected by a perpen- 
dicular plane, then any incident wavevector which 
starts at the origin and ends on the plane will satisfy 
the diffraction condition [the convention used by 
Kittel (1976) is followed for the direction of k0]. The 
procedure is repeated for all the reciprocal-lattice 
vectors and the obtained planes form the boundaries 
of the Brillouin zones. They specify all the energies 
and directions of the incident waves which can be 
diffracted by the periodic lattice of scatterers. 

An example of the Brillouin construction is given 
in Fig. 1 for a (001) projection of a cubic reciprocal 
lattice. Note that this construction is done with respect 
to the reciprocal lattice which is fixed to the real 
lattice. Hence, the Brillouin zone boundaries do not 
depend on the incident-beam direction and move only 
when the real lattice is tilted. 

2.2. Kikuchi lines of crystals (3D real lattfces ) 

The geometry of the Brillouin zone boundaries of 
Fig. 1 resembles the geometry of the Kikuchi lines 

( 

Fig. 1. Briliouin zone boundaries are constructed by bisecting every 
reciprocal-lattice vector ghkl with an orthogonal plane, as shown 
for the (001) reciprocal-lattice plane of a cubic lattice. The 
incident wavevector ko which starts at the origin and ends on 
one of those planes satisfies the conditions for elastic scattering. 

which are observed in the high-energy electron 
diffraction (HEED) patterns. The Kikuchi lines are 
due to electrons which have been scattered diffusely 
or inelastically within the crystal. The forward peaked 
spherical electron waves, which arise from the 
different nonelastic events, are incoherent with each 
other and with the incident beam. However, each of 
those beams is coherent with itself, and is subject to 
elastic scattering by the crystal (e.g. Cowley, 1984; 
Fan, 1989). The role of each primary diffuse or inelas- 
tic scattering event is to expose the crystal to a wide- 
angle coherent illumination. 

In the geometrical construction we represent the 
spherical coherent illumination by a sphere of radius 
ko = 1/A which is centered at the origin of the reciprocal 
lattice of the crystal and is filled with incident 
wavevectors. The reciprocal-lattice origin is then 
translated to the surface of the sphere and positioned 
at the ends of each of the incident wavevectors. In 
the following discussion we will refer to this sphere 
as the 'sphere of reflections', but we want to note that 
it is in essence an Ewald sphere with two additions 
to the standard convention. Namely, for parallel 
illumination the only difference is that we introduce 
an additional reciprocal lattice whose origin is at the 
center of the Ewald sphere and with respect to which 
we draw the Brillouin zone boundaries. The condition 
for diffraction is again satisfied when a point of the 
reciprocal lattice (fixed to the end of the incident 
wavevector) lies on the surface of the Ewald sphere, 
but from Fig. 1 it is obvious that we can rephrase this 
clause by saying that diffraction occurs from a given 
crystal plane when the incident wavevector ends on 
one of the BZ boundaries constructed by bisecting 
the reciprocal-lattice vectors of that plane. 

The second more-important difference between the 
standard Ewald-sphere construction and the one pro- 
posed here stems from the convention that we intro- 
duced to represent wide-angle illumination. The usual 
convention is to have only one reciprocal lattice with 
a different Ewald sphere for each direction of 
incidence [an example is given in Fig. 2(a) for a 
convergent-beam diffraction]. This description is cor- 
rect, but it does not correspond in a straightforward 
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Fig. 2. Two equivalent Ewald-sphere constructions for convergent- 
beam illumination. (a) The conventional representation with 
one reciprocal lattice and a range of spheres. (b) Representation 
with one sphere and a range of reciprocal lattices which corre- 
sponds directly to the experimental geometry. 
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manner to the experimentally observed diffraction 
geometry. For example, the impression from Fig. 2(a) 
is that the Laue circles (the intersections of the Ewald 
spheres with the reciprocal-lattice plane) are not con- 
centric, while in the experimental convergent-beam 
electron diffraction (CBED) patterns they are concen- 
tric (Spence, 1990) and their centers are on the zone 
axis (Gajdardziska-Josifovska & Cowley, 1989). To 
derive these conclusions one would need to consider 
that all the parallel directions meet at a point at 
infinity (or in the back focal plane of the objective 
lens in a transmission electron microscope). Thus, 
the centers of the Laue circles, which in Fig. 2(a) are 
obtained by projecting the centers of the Ewald 
spheres onto the zero-order Laue zone, merge to a 
point in the diffraction pattern because the projecting 
lines are parallel to each other and to the zone axis 
of the particular zero-order Laue zone. To avoid this 
convoluted thinking imposed by the standard conven- 
tion of one reciprocal lattice with many Ewald 
spheres, we propose a convention in which the wide- 
angle illumination is represented by one sphere with 
many reciprocal lattices (Fig. 2b). This geometry cor- 
responds directly to the geometry of the experimental 
diffraction patterns (e.g. the diffraction spots are discs 
with diameter defined by the convergence angle; all 
the points in the transmitted disc are 000 points; the 
Laue circles are concentric; the excitation error is 
positive for the inner half of the excited disc but 
negative for the outer ha l f ; . . . ) ,  but even though it is 
instructive for convergent-beam patterns, it would be 
very cumbersome for spherical illumination. In the 
latter case the convergence angle is 27r and if the 
scattering geometry is to be deduced by the sole use 
of the Ewald-sphere-type construction, one would 
need to draw an infinite number of reciprocal-lattice 
planes and keep track of each of their origins (or 
infinite number of spheres in the standard conven- 
tion). The problem is simplified by combining the 
sphere of reflections (Fig. 2b) with the Brillouin zone 
boundaries (Fig. 1). In this case all the possible direc- 
tions for elastic scattering are defined by the intersec- 
tions of the sphere with the BZ boundaries (i.e. draw 
a sphere of radius k0 which is centered at the origin 
in Fig. 1 and note that the Bragg condition is satisfied 
only when the incident beam ends on one of the 
intersections of the BZ boundaries with the sphere). 
In the diffraction pattern these directions correspond 
to the experimentally observed Kikuchi lines. This 
description can also be applied to the Kossel lines in 
the X-ray patterns, the Kossel patterns in the conver- 
gent-beam electron diffraction, and the Kossel- 
MSllenstedt patterns in the shadow images of crystals. 
In the subsequent sections we will refer to all these 
lines when speaking about Kikuchi lines, and will 
call them K lines. 

An example of the above description for the 
geometry of the K lines is given in Fig. 3 where one 

plane of the Brillouin zones is intersected with a 
sphere of reflections. The allowed directions for elas- 
tic scattering form a cone whose semiapex angle 
(90°-6)) depends on the length of the reciprocal- 
lattice vector giving the plane (ghk~) and on the radius 
of the sphere ( l /A).  The simple derivation cos (90 ° -  
6)) = (ghkt /2) / (1/A)  gives the Bragg law for the (hkl) 
crystal plane: 2dhkt sin 6) = A. A similar construction 
is described by Hirsch, Howie, Nicholson, Pashley 
& Whelan (1977) but their sphere is of radius 2/A. 
The intersection of the cone with the diffraction screen 
will define the geometry of the experimentally 
observed K line. In the HEED configuration, the 
screen is flat and the intersection is a hyperbola. 
Owing to the small scattering angles, the hyperbola 
is approximated with a straight line for all the prac- 
tical considerations of K lines. In the LEED configur- 
ation the screen is hemispherical and the intersection 
of the cone with it gives a K line in the form of a 
circle or a segment of circle. 

All the K lines can be obtained by considering the 
cones which arise from all the Brillouin zone boun- 
daries of the 3D crystal. Since the Brillouin zones are 
fixed to the crystal, the K lines give direct information 
about the orientation of the crystal. The intensity of 
the Kikuchi lines is a much more involved subject, 
and is beyond the scope of this work. 

3. Brillouin zones of 2D real lattices 

3.1. Constructions and general properties 

The reciprocal lattice of a 2D real lattice is made 
of infinite rods which are parallel to each other and 
are orthogonal to the plane of the real lattice. A top 
view of a simple square reciprocal lattice looks the 
same as that of a 3D lattice (Fig. 1). The BZ boun- 
daries in this plane of the projection are the conven- 
tional ones for 2D lattices. For their construction it 
is sufficient to treat the reciprocal lattice as a 2D 

Fig. 3. The intersection of the sphere of reflections with the plane 
which is a normal bisector of the reciprocal-lattice vector ghkl 
gives a circle. The wavevectors which start at the center of the 
sphere and end on the intersecting circle form a cone which 
yields a Kikuchi line of the (hkl) plane. 
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lattice made of points. These boundaries describe the 
possible directions for elastic scattering within the 
plane of the real lattice (when both the incident and 
the scattered wavevectors are parallel to this plane). 

This standard description of the BZ boundaries of 
2D real lattices falls short of recognizing the 3D 
nature of the reciprocal lattice. Because of that it does 
not describe the elastic scattering events in which the 
incident or the scattered wavevector is at an angle to 
the real lattice. The same lack of full description was 
also found for the ID case. We aim to fill the gap in 
this paper. 

If the reciprocal lattice is observed edge on, as in 
Fig. 4, the rods become apparent. One point on a rod 
is chosen as an origin of the reciprocal lattice, and 
the lattice is characterized by continuous sets of 
reciprocal vectors. Each reciprocal vector should then 
be bisected by an orthogonal plane to obtain all the 
possible BZ boundaries. 

Let us first discuss the boundaries arising from the 
rod that contains the origin of the reciprocal space 
(Fig. 4a). Since the rod describes a continuum of 
reciprocal vectors we can choose a vector with an 
arbitrary length and bisect it. The resulting plane gives 
geometrical representation of reflection from the 2D 
lattice. Namely, when the incident wavevector ends 
on any point of this plane, its tangential component 
is equal to the tangential component of the elastically 
scattered wavevector, while its normal component is 
equal but of opposite sign to that of the reflected 
wave. The construction can be repeated for any of 
the reciprocal vectors on the rod, denoting that reflec- 
tion occurs at any angle of incidence. 

Let us now consider the boundaries of the Brillouin 
zones which are due to the other rods of the reciprocal 

000 
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ot 

Fig. 4. Construction of  the three-dimensional Brillouin zone boun- 
daries for a two-dimensional lattice. (a) The planes bisecting 
the vectors of  the 00 rod specify the reflection conditiotas for the 
2D real lattice. (b) The envelopes of the planes that bisect the 
reciprocal vectors of the non-zero rods are parabolic surfaces. 
They define the condititions for elastic scattering into or out of  
the plane of  the 2D lattice (when the incident or the scattered 
wavevector is parallel to the 2D lattice). 

lattice. Every reciprocal vector is again bisected with 
a plane, as shown for one rod in Fig. 4(b). The planes 
form continuous envelopes. The intersections of the 
envelopes with the plane of the projection are con- 
focal parabolas. The origin of the reciprocal lattice 
is their common focus, while the rods of the reciprocal 
lattice are their directrices (recall the definition for a 
parabola as a curve of equal distance between a point 
and a line). The parabolas extend in and out of the 
plane of the projection to form infinite parabolic 
surfaces. The equation of the parabolic surface that 
arises from the h k  rod of the reciprocal lattice (ghk  = 

h a * + k b * )  can be expressed in terms of the com- 
ponents of the wave vector that are tangential (k0,) 
and normal (k0,) to the 2D real lattice [their projec- 
tions to the plane of the drawing are denoted in Fig. 
4(b)]: 

k2 ,+k2,  =k2 (2) 

k2o = k2 = (ko,--ghk) 2 (3) 

k~,, : g 2hk -- 2ghk  . ko,. (4) 

Any wavevector starting at the origin of the reciprocal 
lattice and ending on one of these surfaces can be 
scattered elastically into a direction parallel to the 
2D real lattice and v i c e  ver sa .  Because of this, the 
parabolic boundaries of the Brillouin zones can be 
of special interest. 

We could now define K lines of 2D real lattices as 
directions given by the intersections of the described 
BZ boundaries with the sphere of reflections. Owing 
to the much less restrictive conditions than in the 3D 
case, the K lines of a true 2D lattice would yield an 
increased but mainly continuous background. The 
intersections of the sphere with the parabolic boun- 
daries would be the only distinct features of the K 
map. 

The experimental observations of the '2D K lines' 
are limited by the fact that the crystal samples used 
for electron and X-ray diffraction are always three- 
dimensional. A 2D real lattice is usually associated 
with surface-sensitive diffraction techniques, and in 
the case of LEED it is attributed to the small energy 
of the incident electrons, while in RHEED it is due 
to the grazing angle of incidence of the high-energy 
electrons. But, in both cases, the experimental pat- 
terns always show contributions from the bulk of the 
crystal, and in order to distinguish between the sur- 
face and the bulk features, proper dynamical calcula- 
tions are needed when the surface has the same perio- 
dicity as the bulk. Thus, reconstructed surfaces would 
be the closest to the ideal free-standing 2D lattice for 
qualitative experimental studies of the geometry of 
the 2D Kikuchi lines. Channeling would give an 
additional case when the 3D crystal could diffract as 
an effective 2D lattice. We will treat the two cases in 
the following sections. 
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3.2. Parabolas in R H E E D  patterns due to surface 
reconstructions 

The exact geometry of the  K lines oftrue 2D lattices 
should be obtained by intersecting the sphere of 
reflections with the parabolic BZ boundaries of (4) 
and by considering the shape of the diffraction screen. 
For high-energy electrons (i.e. large radius of the 
sphere), the parabolas constructed in Fig. 4(b) are a 
good approximation for the experimental 2D K lines 
recorded on flat screens. 

The diffraction experiments with surface recon- 
structions have in general been limited to UHV 
environments. They have been performed with 
parallel illumination and recorded with exposure 
times optimized to display the Bragg spots or rods. 
Because of this, the survey of the K lines in the 
published RHEED patterns did not reveal parabolas 
which are due to the surface periodicity. A hint of 
their existence can be obtained from the shape of the 
surface reconstruction spots in Fig. 1 of Ichikawa & 
Ino (1984). 

Recently in our laboratory we have discovered a 
(31/2 × 31/2)R 30 ° reconstruction on the (111) surface 
of MgO which had been annealed at high temperature 
in oxygen atmosphere. The details of the surface 
preparation and characterization will be described 
elsewhere (Crozier, Gajdardziska-Josifovska & 
Cowley, 1990). For the purpose of this paper it is 
only important that the reconstruction is stable in air 
and provides a test 2D sample for diffraction experi- 
ments in conventional electron microscopes. 

A reflection election microscope (REM) image of 
the MgO (111) surface and the RHEED patterns of 
the (2 i i )  zone axis are shown in Fig. 5. The selected 
area patterns obtained for larger incident angle (Fig. 
5b) and grazing incidence (Fig. 5c) show only bulk 
K lines (owing to the relatively low efficiency of the 
inelastic scattering as a sole provider of wide-angle 
coherent illumination). The intensity of the K lines 
is increased in the convergent-beam RHEED pattern 
shown in Fig. 5(d) in which two pairs of surface 
parabolas are clearly visible. The parabolas are 
smooth and continuous, as opposed to the more 
broken shape of the bulk parabola. Their positions 
and forms are as predicted in the geometrical con- 
struction of Fig. 4(b) with added refraction at the 
surface. 

crystal plane (this makes the scattering from the 
individual parallel planes incoherent). For, the chan- 
neled electrons, the 3D crystal would look like a 
collection of independent  2D lattices. The possible 
directions for elastic scattering out of each of the 
channeling planes would be defined by the parabolic 
BZ boundaries of 2D lattices. In the experimental 
HEED patterns, a band of confocal parabolas should 
arise from each crystal plane along which channeling 
occurs. The focus of all the parabolas that belong to 
a crystal zone would be on the zone axis. The 3D K 
bands of the channeling planes should be observed 
simultaneously with the 2D K bands of parabolas 

3.3. Parabolas in THE ED and R H E E D  patterns due 
to channeling 

Two qualitative conditions need to be met to attain 
channeling of electrons along or parallel to crystal 
planes. Firstly, a beam has to be excited whose 
wavevector is parallel or nearly parallel to a crystallo- 
graphic plane (the energy of the component  normal 
to the plane becomes very small). Secondly, the beam 
has to be trapped by the effective potential of the 

Fig. 5._Experimental REM image (a) and RHEED patterns from 
a (211) zone axis of the (3 ~/2 x 31/2)R 30 o (111) surface of MgO 
recorded with: (b) parallel illumination at larger incident angle 
which was used for imaging; (c) parallel illumination at grazing 
incident angle; (d) convergent-beam illumination at grazing 
incident angle. The small arrows point to surface features in the 
diffraction patterns, the most important of which are the K2 
parabolas in (d). 



M. GAJDARDZISKA-JOSIFOVSKA AND J. M. COWLEY 79 

because for most of the incident-beam directions the 
crystal remains three-dimensional. The 3D K band 
of a crystallographic plane should be centered on the 
axis of symmetry of its band of parabolas. The 3D K 
lines arising from the other planes of the zone would 
be tangential to the parabolas. In the rest of this 
section we will attempt to unify the experimental 
observations and the previous explanations of the 
parabolas within the simple model of planar channel- 
ing followed by 2D diffraction. 

The textbook definition of the parabolas in the 
THEED patterns is that they are envelopes of the 3D 
K lines (e.g. Hirsch et al., 1977). This description is 
geometrically correct [recall Fig. 4(b) and perform 
the construction for a discrete set of points instead 
of continuous rods], but it has to call for dynamical 
diffraction effects to explain why continuous para- 
bolas are actually observed in the experimental pat- 
terns (James, Bird & Wright, 1989). 

For the parabolas obtained from 3D samples we 
would argue that the two different explanations: (i) 
3D lattice with geometry defined by dynamical 
diffraction; and (ii) channeling with geometry 
obtained from kinematical conditions for a 2D lattice; 
could be treated as two equivalent models for the 
same phenomenon. In essence, the crystal planes 
which have deep potential wells with planar channel- 
ing states [see Gemmell (1974) for equations for 
channeling states] would also cause strong dynamical 
diffraction effects. The dynamical theory of electron 
diffraction is the only developed treatment which 
should be used to calculate the intensities of the 
parabolas, but the addition of a kinematical descrip- 
tion for the HEED parabolas should prove useful for 
qualitative considerations. Namely, the geometry of 
most of the important features in the electron diffrac- 
tion patterns can be understood from kinematical 
arguments, and the parabolas need not be an 
exception. 

In the previous works dealing with the geometry 
of surface channeling (Ichimiya, Kambe & 
Lehmpfuhl, 1980; Lehmpfuhl & Dowell, 1986; Peng 
& Cowley, 1987), the parabolas were described as 
projected centers of Ewald spheres. This geometrical 
interpretation of the surface parabolas in the conver- 
gent-beam RHEED patterns is based on the conven- 
tional Ewald-sphere construction for elastic scatter- 
ing in which the convergent beam is represented bY 
a range of Ewald spheres. When each of those spheres 
is tangent to one rod of the reciprocal lattice, the 
projected centers of the Ewald spheres trace a para- 
bola (Fig. 6) described by the equation 

k~. =g~,k + 2ghk. ko, (5) 

[the notation is modified to correspond to our nota- 
tion in (4)]. 

Let us discuss the similarities and the differences 
between Fig. 6 and our Fig. 4(b). The parabolas in 

both geometries arise from the effective 2D nature of 
the real lattice. The geometry of Ichimiya, Kambe & 
Lehmpfuhl (1980) refers to the origin of the reciprocal 
lattice which is fixed to the incident-beam direction, 
while our parabolic Brillouin zone boundaries are 
specified with respect to the origin of the reciprocal 
lattice which is fixed to the crystal. This difference in 
the coordinate systems results in different signs of the 
dot products in (4) and (5) which are otherwise 
equivalent. The choice of the representation should 
only depend on the preferences of the reader, since 
they both give identical conclusions about the elastic 
scattering processes from a 2D real lattice. The advan- 
tage of the Brillouin zones approach (with only one 
sphere centered at the origin of the reciprocal lattice 
fixed to the crystal) could come from its direct corre- 
spondence to the experimentally observed diffraction 
patterns [i.e. projected centers of Ewald spheres are 
not associated with observable intensities, yet the 
parabolas that they trace are present in the HEED 
patterns; in addition, the impression from Fig. 6 
is that the surface beam which is excited is on the 
outer side of the relevant parabola, while in the 
experimental patterns shown by Gajdardziska-Josi- 
fovska & Cowley (1989) the surface channeled beam 
is on the inner side of the parabola, as drawn in 
Fig. 4(b)]. 

The full geometrical description of an experimental 
THEED or RHEED pattern with channeling on some 
of the crystal planes would involve plotting of 3D 
and 2D K lines which are fixed to the crystal, and 
Bragg spots which are fixed to the incident beam 
(Gajdardziska-Josifovska & Cowley, 1989). In the 
RHEED case, the refraction effects at the surface 
need to be introduced as well (Peng & Cowley, 1987). 

f 

/ 

Fig. 6. The RHEED parabolas were explained as projected centers 
of Ewald spheres under angles of incidence when the spheres 
are tangent to the reciprocal-lattice rods (adapted from Ichimiya, 
Kambe & Lehmpfuhl, 1980). This geometry is equivalent to the 
geometry of Fig. 4(b). 
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Detailed studies of the various surface and bulk chan- 
neling cases will be described elsewhere. 

3.4. K2 lines in L E E D  patterns 

De Bersuder (1968) was the first to observe a new 
type of Kikuchi lines which appeared simultaneously 
with the ordinary (3D) Kikuchi lines in the LEED 
patterns from AI (001) surface. He related them to 
the two-dimensional nature of the surface, and called 
them K2 lines. The geometry of the experimental K2 
lines (reproduced in Fig. 7a) was explained by inter- 
sections of the Ewald sphere centered at the origin 
of the reciprocal lattice with cylinders of radius 1/h 
whose axes are the rods of the reciprocal lattice. No 
physical arguments were given to explain the meaning 
of the cylinders, but the proposed construction 
(shown in perspective in Fig. 7b) appears to agree 
with the experiment. De Bersuder suggested that the 
mechanism responsible for the K2 lines is analogous 
to the surface resonance effect. The supporting 
evidence for the connection between the K2 lines 
and the resonance effects in LEED has been reviewed 
by McRae (1979), together with the discussion that 
the surface resonance effects in LEED should be 
analogous to those in RHEED.  Because of this we 
would like to apply the Brillouin zones of 2D real 
lattices to the LEED case in order to provide a con- 
sistent physical and geometrical explanation for the 
K2 lines and the HEED parabolas. 

We could argue again that the lattice would be 
truly two-dimensional only to the electrons with 
wavevectors parallel to the surface which are trapped 
by the surface resonance states. The elastic scattering 
out of the surface plane would then be governed by 
the parabolic boundaries of the 2D Brillouin zones 
given by (4). The only LEED specific parameters 
would be the much smaller radius of the Ewald 
sphere, and the usual top view of the surface (as 
opposed to the grazing angle of view in RHEED).  
The intersection of the sphere of reflections [cen- 
tered at the origin of the reciprocal lattice and 
having the same radius as the sphere in Fig. 7(b)] 
with one of the parabolic surfaces is presented in 
Fig. 7(c). 

The 2D K line of Fig. 7(c) looks like the experi- 
mental lines of Fig. 7(a), but it also resembles the 
line of Fig. 7(b). Elementary derivations can show 
that the intersection of a sphere (centered at the 
origin:  x2--[ - y 2 +  z2 = ,~,-2) with a parabolic surface (i.e. 
due to the h0" rod: z 2=g20-2ghex ) is a cylinder 
[ ( x -  ghO)2 + y2 = (A)-2, with axis on the h0 rod]. Thus 
the two geometries are equivalent, and one could also 
think of the parabolas in the HEED patterns as inter- 
sections of a large sphere with large cylinders. The 
advantage of the Brillouin-zone scheme would come 
from its generality and the familiarity of the involved 
physical concepts. 

. . . .  K1 lines 

(a) 

K2 lines 

(b) 

/ 

I°" ''¢ 

(c) 

Fig. 7. (a) Stereographic projection of LEED K 2 and K t lines 
from AI (100) surface (after De Bersuder, 1968). (b) Geometry 
of K2 lines was explained by De Bersuder as the intersection 
of a sphere (centered at the origin of the reciprocal lattice) with 
a cylinder of the same radius whose axis is a rod of the reciprocal 
lattice. (c) The intersection of the sphere of reflections with the 
parabolic Brillouin zone boundaries also reproduces the correct 
geometry of the K2 lines. 
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4. Brillouin zones of ID real lattices 

4.1. Construction and properties 

The reciprocal lattice of a 1D real lattice is made 
of equidistant planes which are othogonal to the line 
of the real lattice. Owing to the azimuthal symmetry 
about the string of the real lattice, the projections of 
the reciprocal lattice on any planes that are parallel 
to the real lattice are identical. These projections are 
made of rods, and the constructions for the 2D lattices 
shown in Fig. 4 can be used to explain the Brillouin 
zones of the 1D lattice. 

The boundaries that arise from the plane that con- 
tains the origin of the reciprocal lattice describe the 
reflection of the waves which are incident at an 
arbitrary angle to the 1D lattice. The boundaries that 
arise from the other planes of the reciprocal lattice 
can be obtained by rotating Fig. 4(b) about the 
horizontal axis of symmetry. The continuous 
envelopes in the 1D case are confocal paraboloids of 
revolution (Fig. 8). The focal point is again the 
reciprocal-lattice origin. The points on the surfaces 
of the paraboloids specify the directions for elastic 
scattering of waves with incident wavevectors that 
are parallel to the 1D string of scatterers and vice 
versa. Equation (4) can be modified to describe the 
paraboloids by replacing ghk with its 1D equivalent 
gh (where gh = ha*) and by making it scalar (i.e. the 
dot product is not necessary since now ko, is the 
component of the wavevector tangential to the 1D 
lattice and thus parallel t o  gh) :  

k2on = g2 - 2ghko,. (6) 

4.2. 1D K lines and axial channeling 

If the real lattice is an ideal 1D lattice, then all the 
boundaries of the ' I D '  Brillouin zones need to be 

5 

/ 
Fig. 8. The Brillouin zone boundaries which specify the scattering 

of the waves that propagate parallel to the I D real lattice are 
paraboioids of  revolution. This figure illustrates parts of the 
paraboloids which arise from the two reciprocal-lattice planes 
which are closest to the origin of  the reciprocal space. 

considered. In the actual experiments the real lattice 
is 3D (bulk crystals) or 2D (reconstructed surfaces) 
and the paraboloids of revolution gain special import- 
ance because they specify the directions for elastic 
scattering of the axially channeled waves. The inter- 
sections of these paraboloids of revolution with the 
sphere of reflections should produce the '1D K lines'. 
Since the focus of the paraboloids and the center of 
the sphere coincide, the intersections are circles which 
are centered about the crystallographic direction of 
the channeling rows of atoms (Fig. 9). The scattered 
wavevectors, which start at the center of the sphere 
and end on those circles, form cones with semiapex 
angles ~o, = cos -1 ( 1 -  nghA) .  The intersections of the 
cones with the diffraction screen would define the 
actual shape of the experimentally observed 1D K 
lines. 

In the HEED patterns the small-angle approxima- 
tion can be applied to the semiapex angles of the 
cones to give ~o, = (2nghA) 1/2. The screen is flat and 
the conical sections give circles (when the channeling 
row of atoms is oriented perpendicular to the screen) 
or ellipses (for off-axis tilts of the crystal, or due to 
the refraction effects in RHEED).  In the practical 
cases the eccentricity of the ellipses is small and for 
further discussion we will regard the 1D HEED K 
lines to be circles. 

• When the incident beam is parallel to the channel- 
ing row of atoms, the high-order Laue zone (HOLZ) 
Bragg spots lie on the 1D K circles. This is a typical 
configuration in the axial channeling THEED experi- 
ments (Ichimiya & Lehmpfuhl,  1978), but the atten- 
tion in those works has concentrated on the intensities 
of the K pattern close to the zone axis and the K 
circles which are a direct consequence of the axial 
channeling have not been studied. The circles in the 
THEED patterns were described as envelopes of 
parabolas, just as the parabolas were understood as 
envelopes of Kikuchi lines (e.g. Hirsch et al., 1977). 

In the RHEED patterns the continuous semicircles 
were noted very early, and were associated with elec- 
tron channeling along rows of atoms on the crystal 
surface (Emslie, 1934). In the more modern UHV 
experiments with Si (111) surfaces, semicircles were 
observed which correspond to the 7 x 7  surface 
periodicity (e.g. Ino, 1977). Recently, Yao & Cowley 

Fig. 9. The intersection of  the sphere of reflections with the para- 
boloid of  revolution (arising from the gh vector) is a circle. The 
scattered vectors form a cone with a semiapex angle ~0 = 
cos- ! ( 1 - gh A ). 
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(1989) compared the RHEED and THEED patterns 
of several crystals and concluded that the circles in 
both cases are due to axial channeling. The illumina- 
tion in the RHEED configuration is tilted and the 
circles are separated from the HOLZ Bragg spots. 
This separation was measured by Yao & Cowley to 
obtain information about the axial channeling energy 
levels. 

In the LEED experiments the cones which corre- 
spond to the 1D K lines intersect the semispherical 
diffraction screen in circles or segments of circles. 
Thus, the geometry of the 1D K lines is identical to 
the geometry of the 3D K lines, but the position of 
the circle arising from the 1 D reciprocal-lattice vector 
gh should differ from the position of the correspond- 
ing 3D circle arising from the vector ghO0 [i.e. the 
semiapex angles of the two cones that give the 1D 
circle and the 3D circle are different: t~lD = 
COS -1 (1--ghA); ~P3D= COS - '  (ghooA/2)]. 

LEED circular arcs which could not be explained 
as 3D K lines were first observed by Germer & Chang 
(1966) and were associated with 1D diffraction. They 
were called K1 lines by De Bersuder (1968) who 
discussed their relation with the K2 lines. K 1 lines 
have not gained attention in the LEED surface 
resonance studies. 

The axial channeling followed by diffraction from 
the effective 1D lattice gives circles in the K patterns. 
The geometry of this case may also be described in 
terms of the relevant Brillouin zone boundaries which 
are shown to be paraboloids of revolution. 

The full description of the Brillouin zones of 2D 
and 1D lattices should be of utmost importance in 
all the solid-state problems when the dimensionality 
of the crystal is reduced. The existence of 2D and 1D 
K lines in the diffraction patterns of 3D crystals 
suggests that similar effects should be observed for 
any angular resolved signals from '2D' and ' ID '  
crystals. 
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5. Concluding remarks 

A general explanation of the geometry of the HEED 
and LEED K patterns has been obtained by develop- 
ing the complete geometry of the Brillouin zones, and 
by intersecting the Brillouin zone boundaries with 
the sphere of reflections. 

Of all the boundaries of the Brillouin zones of 2D 
lattices, the parabolic bounding surfaces are shown 
to describe the elastic scattering from the crystal 
planes at channeling conditions. The intersections of 
these surfaces with the sphere of reflections are shown 
to give the experimentally observed parabolas in the 
HEED patterns, and the K2 lines of the LEED pat- 
terns. In both cases, the planar (surface) channeling 
appears to be the necessary primary event for obtain- 
ing 2D K lines in the diffraction pattern of a 3D 
crystal. Thus, the presence of the 2D K lines is an 
unambiguous sign that the corresponding crystal 
planes possess channeling quantum states at the given 
crystal orientation and for the used energy of incident 
electrons. This simple model of channeling followed 
by 2D diffraction unifies the previous numerous but 
rather diverging descriptions of parabolas, K2 lines 
and channeling. 

Additional support for the proposed description is 
obtained from the diffraction experiments with a 
(3X/E×31/2)R 30 o MgO (111) surface which serves as 
a test 2D sample. In the CBED RHEED patterns we 
observe parabolas which correspond to the surface 
periodicity and which yield the first experimental 
evidence that the parabolas are K lines of 2D lattices. 

References 

CHADDERTON, L. T. (1970). J. Appl. Cryst. 3, 429-465. 
COWLEY, J. M. (1984). Diffraction Physics, pp. 315-318. Amster- 

dam: North-Holland. 
CROZIER, P. A., GAJDARDZ1SKA-JOSIFOVSKA, M. & COWLEY, 

J. M. (1990). J. Electron Microsc. Tech. In preparation. 
DE BERSUDER, L. (1968). C. R. Acad. Sci. Set. B, 266, 1489-1491. 
EMSI.IE, A. G. (1934). Phys. Rev. 45, 43-46. 
FAN, G. Y. (1989). Proc. 47th Annual EMSA Meeting, edited by 

G. W. BAILEY, pp. 52-53. San Francisco: San Francisco Press. 
GAJDARDZISKA-JOS1FOVSKA, M. & COWLEY, J. M. (1989). Proc. 

47th Annual EMSA Meeting, edited by G. W. BAILEY, pp. 
498-499. San Francisco: San Francisco Press. 

GEMMELL, D. S. (1974). Rev. Mod. Phys. 46, 129-227. 
GERMER, L. H. & CHANG, C. C. (1966). Surf Sci. 4, 498-501. 
HIRSCH, M. A., HOWIE, A., NICHOLSON, R. B., PASHLEY, 

D. W. & WHELAN, M. J. (1977). Electron Microscopy of Thin 
Crystals, pp. 121-124. Malabar: Krieger. 

ICHIKAWA, T. & INO, S. (1984). Surf Sci. 136, 267-284. 
ICHIMIYA, m., KAMBE, K. & LEHMPFUHL, G. (1980). J. Phys. 

Soc. Jpn, 49, 684-688. 
ICH1MIYA, A. & LEHMPFUHL, G. (1978). Z. Naturforsch Tell A, 

33, 269-281. 
INO, S. (1977). Jpn. J. Appl. Phys. 16, 891-908. 
JAMES, R., BIRD, D. M. & WRIGHT, A. G. (1989). Inst. Phys. 

Conf. Set. No. 98, edited by P. J. GOODHEW & H. Y. ELDER, 
pp. 111-114. Reading: Eastern Press Ltd. 

KITTEL, C. (1976). Introduction to Solid State Physics, p. 51. New 
York: John Wiley. 

LEHMPFUHL, G. & DOWELL, W. C. T. (1986). Acta Cryst. A42, 
569-577. 

MCRAE, E. G. (1979). Rev. Mod. Phys. 51,541-568. 
MIYAKE, S. & HAYAKAWA, K. (1970). Acta Cryst. A26, 60-70. 
PENG, L.-M. & COWLEY, J. M. (1987). J. Electron Microsc. Tech. 

6, 43-53. 
SPENCE, J. C. H. (1990). Electron Diffraction Techniques, edited 

by J. M. COWLEY, Ch. 8. Oxford Univ. Press. In the press. 
YAO, N. & COWLEY, J. M. (1989). Ultramicroscopy, 31, 149-157. 


